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We introduce a model of a lossy second-harmonic-generatingsxs2dd cavity externally pumped at the third
harmonic, which gives rise to driving terms of a new type, corresponding to across-parametricgain. The
equation for the fundamental-frequency(FF) wave may also contain a quadratic self-driving term, which is
generated by the cubic nonlinearity of the medium. Unlike previously studied phase-matched models ofxs2d

cavities driven at the second harmonic or at FF, the present one admits an exact analytical solution for the
soliton, at a special value of the gain parameter. Two families of solitons are found in a numerical form, and
their stability area is identified through numerical computation of the perturbation eigenvalues(stability of the
zero solution, which is a necessary condition for the soliton’s stability, is investigated in an analytical form).
One family is a continuation of the special analytical solution. At given values of the parameters, one soliton
is stable and the other one is not; they swap their stability at a critical value of the mismatch parameter. The
stability of the solitons is also verified in direct simulations, which demonstrate that an unstable pulse rear-
ranges itself into a stable one, or into a delocalized state, or decays to zero. A soliton which was given an initial
boostC starts to move but quickly comes to a halt, if the boost is smaller than a critical valueCcr. If C.Ccr,
the boost destroys the soliton(sometimes, through splitting into two secondary pulses). Interactions between
initially separated solitons are investigated, too. It is concluded that stable solitons always merge into a single
one. In the system with weak loss, it appears in a vibrating form, slowly relaxing to the static shape. With
stronger loss, the final soliton emerges in the stationary form.
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I. INTRODUCTION

In the vast family of optical solitons, an important niche is
occupied by solitary waves in cavities, supported by the qua-
dratic sxs2dd nonlinearity of the degenerate optical-
parametric-oscillator(OPO) type [1,2]. The intrinsic loss in
the cavity should be compensated by an external pump field
E, which in most cases is supplied at the second harmonic
(SH) [3]. Such an arrangement is frequently referred to as
down-conversionand is described by the model in which
either the evolution equation for the SH fieldv explicitly
contains a constant driving term,E [4,5] or, equivalently,
the equation for the fundamental-frequency(FF) waveu in-
cludes a parametric-gain term,Eu*, where the asterisk
stands for complex conjugation[6–8]. Alternatively, the cav-
ity may be externally pumped at the FF, which is referred to
asup-conversion,the respective model including a constant
driving term in the FF equation[9]. For both cases, families
of one-dimensional solitons and their stability have been in-
vestigated in detail; see Refs.[4–10] and references therein.
The stability of cavity solitons was tested in a direct experi-
ment using photorefractive nonlinearity[11].

It should be mentioned that, as the cavity models are dis-
sipative ones, the solitary pulses found in these models are
not solitons in the rigorous sense. Nevertheless, this term is
broadly applied to them; therefore we use it in this paper,
too.

The analysis of solitons in OPO models was extended in
various directions, including the study of moving solitons
[12], interactions between them[13], nondegenerate second-
harmonic generation(SHG) which involves two FF waves
with orthogonal polarizations[14], general three-wave inter-

actions[15], the use of the quasi-phase-matching technique
[16], two-dimensional solitons(see, e.g., Ref.[17]), etc. Be-
sides their significance as the subject of fundamental re-
search, OPO cavity solitons also have a potential for the
design of rewritable multipixel optical-memory patterns[18].

In this work, we aim to propose and analyze another pos-
sibility to drive dissipative cavities with the SHG
nonlinearity—namely, through a phase-matched third-
harmonic(TH) pump wavew. Obviously, the corresponding
driving terms in the equations for the FF and SH fieldsu and
v, which are generated by the parametric interaction of these
fields with the TH pump, are proportional, respectively, to
wv* and wu*. Thus, this model includes a new feature, the
cross-parametric gain,in the system of coupled FF and SH
waves, and a problem of straightforward interest is to study
solitons that can be supported by this type of gain in a lossy
SHG setting, especially as concerns the stability of the soli-
tons. Besides that, we will also take into account the possi-
bility of an additional quadratically nonlinear parametric
self-driving term in the equation for the FF fieldu, in the
form of wsu* d2, which may be induced by the same TH
pump through thexs3d (cubic) nonlinearity. In this work, we
consider only bright solitons; dark solitons and patterns in
the form of domain walls(see, e.g., Ref.[19]) may also be
possible in the model including the TH drive.

As concerns the mutual phase matching between the FF,
SH, and TH fields, which is implied in the model, it was
demonstrated, in another context, that matching of this type
may take place in the so-called multistepxs2d systems[20].
However, the subject of Ref.[20] was the corresponding
three-wave solitons, rather than pumping of the FF and SH
fields through the TH wave.
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The paper is organized as follows. In Sec. II, we give the
formulation of the model and find particular exact solutions
for the solitons in an analytical form. In the same section, we
also investigate stability conditions for the zero solution,
which is a necessary prerequisite for the stability of solitons.
In Sec. III, we find two families of general soliton solutions
in a numerical form. One family is a direct continuation of
the exact solution, while the other one is different. As well as
the analytically found soliton, they always have a single-
humped shape, but unlike the constant-phase exact solutions,
they feature intrinsic chirp. Stability regions for the solitons
are identified, in the system’s parameter space, through com-
putation of the corresponding eigenvalues for small pertur-
bations. One of the solitons is stable, and the other one is
not; they swap stability via a bifurcation at a critical value of
the mismatch parameter. The shape of the stability regions is
quite nontrivial; in the model with weak losses, stable soli-
tons may have complex eigenvalues, corresponding to
weakly damped intrinsic oscillatory modes. The stability is
also verified in direct simulations, with the conclusion that
the unstable soliton rearranges into a stable one or into a
delocalized spatially periodic state, or, sometimes, it decay to
zero. Also in Sec. III, we show that attempts to produce
moving solitons fail: if the soliton is initially boosted by
lending it a speedC, it quickly stops, provided thatC is
smaller than a critical valueCcr; the boost withC.Ccr de-
stroys the soliton. Section IV deals with interactions between
two stable solitons, initially placed at some distance. They
merge into a single soliton, which emerges with slowly fad-
ing intrinsic vibrations in the weakly dissipative model, or
immediately in the stationary form if the loss parameter is
larger. Section V discusses possible extensions of the work
and concludes the paper.

II. MODEL AND EXACT RESULTS

Equations which describe the degeneratexs2d interaction
between the FF and SH fieldsusx,td and vsx,td in a one-
dimensional lossy cavity in the presence of an additional
pump TH wave w0, whose depletion is negligible, are
straightforward to derive:

iv0ut +
1

2
uxx + xs2du * v = sq1 − ia1du + iw0v *

+ ixs3dw0su * d2, s1d

2iv0vt +
1

2
vxx +

1

2
xs2du2 = 2sq2 − ia2dv + iw0u * . s2d

Here,v0 is the fundamental carrier frequency, the coefficient
amenable for the three-wave coupling between the FF, SH,
and TH fields is absorbed intow0, q1 andq2 are real detun-
ing coefficients at the FF and SH, anda1 anda2 are the loss
coefficients for the same fields. In this paper, we focus on the
most natural casea1=a2, but the analysis has demonstrated
that the results do not differ in any noticeable aspect fora1
Þa2. The last term in Eq.(1) takes into regard the above-
mentioned possibility of the nonlinear parametric self-
driving of the FF field, which can directly couple to the TH

pump wave in the presence of the cubic nonlinearity. The
factors ofi in front of the cross-parametric-driving terms in
Eqs. (1) and (2), while w0 is assumed real, can always be
fixed, defining phase shifts between the corresponding
waves.

After obvious normalizations(in particular, the SH field is
rescaled withu→Î2u, so as to keep the coefficients in front
of the cross-driving terms equal in the two equations), Eqs.
(1) and (2) can be cast in the following form:

iut +
1

2
uxx + u * v = s1 − ia1du + ia0v * + ibsu * d2, s3d

ivt +
1

4
vxx +

1

2
u2 = s2q − ia1dv + ia0u * , s4d

wherea0 andb are the effective pumping coefficients, both
proportional tow0, and the mismatch coefficient in Eq.(3) is
normalized to be 1(a different variant of the model is ob-
tained by fixing the latter coefficient to be −1, but the exis-
tence of bright solitons is not expected in that case). The
notation for the fieldsu andv and the coefficienta1 was not
altered, although they were rescaled(recall we assumea2
=a1). By means of a phase shift ofu andv , a0 may always
be made real, which we assume below, whileb is, generally
speaking, a complex coefficient.

Obviously, Eqs.(3) and (4) cannot give rise to stable lo-
calized solutions unless the zero solutionu=v=0 is stable.
Linearizing the equations, an elementary calculation yields
the following stability condition for the zero solution:

a0
2 ø a1

2 + s1 + 2qd2/4, if 1 + 2q . 0,

a0
2 ø a1

2, if 1 + 2q , 0. s5d

Consideration of the linearized version of Eqs.(3) and (4)
makes it also possible to predict the asymptotic form of the
exponentially decaying tails of the soliton solution atuxu
→`,

su,v * d , exps− luxud, s6d

where a(generally) complex constantl (it is defined so that
its real part is positive) is to be found from the equation

S1

2
l2 − 1 + ia1DS1

4
l2 − 2q − ia1D = a0

2. s7d

The complex structure ofl implies that the soliton must
have a nontrivial intrinsic phase structure, which will be
studied in detail below.

Particular exact soliton solutions to Eqs.(3) and (4) can
be sought for as

u0sxd = A eif sech2skxd, v0sxd = Be2if sech2skxd, s8d

wherek ,f andA,B are real constants. This ansatz may pro-
duce solutions in the case ofb=0 [no self-driving quadratic
term in Eq.(3)]. Then, the soliton’s parameters are obtained
by direct substitution of the expressions(8) into Eqs.(3) and
(4):

k2 = 1 − 2q, s9d
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A = B = 3k2, s10d

coss3fd = a1/a0, sins3fd = s1 − 4qd/a0. s11d

Due to the identity sin2s3fd+cos2s3fd;1, Eqs. (11) give
rise to an additional constraint on the parameters of the
model which is necessary for the existence of an exact solu-
tion in the above form:

a0 = sa0dexact; Îa1
2 + s1 − 4qd2. s12d

Equation (12) determines the value of the cross-
parametric gain which is necessary to support the exact soli-
ton solution. Thus, two conditions,b=0 and Eq.(12), must
be imposed on the parameters of Eqs.(3) and(4) to provide
for the existence of an analytical solution of the soliton in the
simple form (8) (in fact, the conditiona1=a2, which was
adopted above, is also necessary for the existence of the
exact soliton in the present form).

It is relevant to notice that, comparing Eq.(8) with the
asymptotic wave form(6), one can identify, for the present
solution,l=2k. Then, taking into regard Eq.(12), it is easy
to verify that thisl indeed satisfies Eq.(7).

A necessary stability criterion for the exact soliton solu-
tion can be obtained by inserting the relation(12) into the
stability condition(5) for the zero solution. After simple al-
gebra, it takes the form

1/10ø q ø 1/2. s13d

A typical example of the exact soliton given by the above
expressions is shown in Fig. 1. Below, numerical results will
be produced fora0Þ sa0dexact and bÞ0, and they will be
compared to the shape shown in Fig. 1.

It is relevant to mention that previously considered phase-
matched OPO models with a parametric gain of the down-
conversion type(provided by the SH pump) did not produce
exact solutions similar to the present one. Exact solutions
were only obtained in the case of large detuning[6,21]. In
that limit, the SH field can be eliminated, and the remaining
FF equation amounts to a parametrically driven damped cu-
bic nonlinear Schrödinger equation, which has a pair of well-
known exact solitary-pulse solutions(see, e.g., Ref.[22]).
On the other hand, nongeneric exact analytical solutions for
solitons(which explicitly contain the chirp) were found in a
model of a two-corexs2d system of the Ginzburg-Landau
type, in which intrinsic gain was set in the nonlinear core and

a linearly coupled additional lossy core played a stabilizing
role [23]. However, the gain in that system was not of the
parametric type.

III. SOLITON FAMILY: NUMERICAL RESULTS

The analytical solutions were found above in the special
case only, and even in that case, full stability analysis re-
quires the use of numerical methods. In this section, we aim
to construct a general family of soliton solutions in a numeri-
cal form and then study their stability. The possibility of the
existence of moving solitons will be considered too.

A. Stationary solitons

A family of soliton solutions to the stationary version of
Eqs.(3) and(4), with ut=vt=0, was constructed by means of
a continuation procedure(based on Newton’s numerical
method), starting with exact solutions in the form given by
Eqs. (8)–(11), which are valid in the case ofb=0 anda0
=sa0dexact, and then gradually varying botha0 and b. As a
result, it was concluded that the shape of the soliton in both
the FF and SH componentsuusxdu and uvsxdu does not vary
much in comparison with that of the exact solution, while a
new feature is an intrinsic phase structure of the soliton’s
wave field, characterized by nonzerochirps f9 and c9,
wherefsxd andcsxd are phases of the fieldsusxd andvsxd.
These features are illustrated by Figs. 2 and 3, which display
two generic subfamilies of the numerically found stationary
soliton solutions, obtained by varying the self-driving coef-
ficient b at fixed values of the cross-parametric-drive coeffi-
cienta0 (in these figures, only real values ofb are included;
complexb, which do not produce effects drastically different
from those found for realb, will be briefly considered be-
low). Figure 2 corresponds toa0=sa0dexact, which is the
value that gives rise to the exact solution(for b=0) [see Eq.
(12)], and Fig. 3 presents the situation at a different value of
a0—namely,a0=0.9sa0dexact. In these figures, the amplitude
profiles are shown through their differences from those cor-
responding to the exact soliton solution(8)–(11), taken at
b=0 anda0=sa0dexact, because full profiles are too close to
each other.

At other values ofa0, the soliton solutions are quite simi-
lar to those displayed in Figs. 2 and 3. We stress that, while
the amplitude-profile differences displayed in these figures

FIG. 1. A typical shape of the
soliton’s FF (a) and SH compo-
nents (b), as given by the exact
analytical expressions(8), (9),
(10), and (11) for b=0, a1=0.1,
and q=0.2; accordingly, Eq.(12)
yields, in this case, sa0dexact

=0.1Î5<0.224.
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may have a relatively complex form, the full profiles ofuusxdu
and uvsxdu always keep a simple single-humped shape.

B. Stability of the stationary solitons

The most fundamental approach to the investigation of the
stability of stationary solitons is based on the computation of

stability eigenvalues within the framework of the system of
linearized equations for infinitesimal perturbations. We have
performed this computation through the corresponding Jaco-
bian matrix of the linearized system. The results can be con-
veniently summarized in the form of maps showing stable
and unstable regions in the system’s parameter planes. First,
in Fig. 4 we display the stability map for the exact soliton

FIG. 2. The differencesuusxdu
− uu0sxdu and uvsxdu− uv0sxdu be-
tween the amplitude distributions
in the FF (a) and SH(b) compo-
nents of the numerically found ge-
neric solitons and the exact ana-
lytical solution. Panels(b) and(d)
display the phase chirpsf9 andc9
in the FF and SH components of
the generic soliton solutions(the
chirp distributions are shown on
the half-axis, in view of the soli-
ton’s symmetry, and only in the
region of x where the soliton is
actually located). The fixed pa-
rameters areq=0.2, a1=0.1, and
for this figure, the corresponding
value sa0dexact=0.224, as per Eq.
(12), is chosen. Note that the full
shapesuusxdu and uvsxdu of all the
solitons in both components are
strictly single-humped ones.

FIG. 3. The same as in Fig. 2,
but for a0=0.9sa0dexact=0.201.
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solutions (8)–(11) in the planesa1,qd, with b=0 and a0

=sa0dexact [see Eq.(12)], and also for the solitons found nu-
merically at the same values of the parameters, except for the
self-driving FF coefficientb=0.1. Note that the stability re-
gion for the exact solitons is located inside the stripe corre-
sponding to the necessary stability condition(13), being ac-
tually much narrower than it(which means that there are
strong nontrivial stability conditions for the soliton proper,
which do not amount to the simple criterion that guarantees
the stability of the zero background).

In Fig. 4 (and similarly in Fig. 5; see below) we distin-
guish between stability subregions in which all the eigenval-
ues are real and those where complex ones are found. Ac-
cordingly, a perturbation applied to the stable soliton in the
latter subregion excites a damped intrinsic oscillatory mode
(this will be observed below, in the case of interactions be-
tween the solitons). Quite naturally, the complex eigenvalues
are found in the case when the loss parametera1 is small
enough.

A similar stability map is shown in Fig. 5 for the same
case which was selected above for Fig. 3—i.e.,a0
=0.9sa0dexact. Additionally, for both casesa0=sa0dexact and
a0=0.9sa0dexact, as well as for another onea0=1.1sa0dexact,
Fig. 6 shows the area of the stability region as a function of
b, between the two values chosen for the display in Figs. 4
and 5,b=0 andb=0.1. Note that two plots in Fig. 6 pertain

to exactly the same soliton subfamilies which were included
in Figs. 2 and 3. A noticeable observation is that, depending
on the value ofa0, the stability area may both decrease and
increase withb. As concerns the additional case ofa0
=1.1sa0dexact, included in Fig. 6, the stability map for it is not
very different from that fora0=sa0dexact (see Fig. 4); there-
fore, it is not displayed here separately.

We have also investigated the case when the self-driving
coefficientb in the FF equation(3) is complex. In this case,
the stability maps are not drastically different from the ones
displayed above for realb (therefore we do not show them
here), although the area of the stability region gets somewhat
smaller. The area is shown, as a function ofubu, for two
different casesb=s1+idubu /Î2 andb= i ubu in Fig. 7.

The conclusions concerning the stability of the solitons,
which were drawn above on the basis of the stability eigen-
values, were also verified against direct simulations of the
full system of equations(3) and (4), performed at a suffi-
ciently dense grid of points covering the predicted stability
and instability regions in the system’s phase space. As a re-
sult, it has been concluded that all the solitons, which were
predicted to be stable, are stable indeed in the direct evolu-
tion. The solitons which are expected to be unstable decay to
zero under the action of small perturbations or, if the pertur-
bation is stronger, they may rearrange themselves into soli-
tons of a new kind, as described below.

C. Bifurcation to the second type of stable solitons

One may observe that the stability areas displayed in Figs.
4 and 5 are located atq,0.25. In particular, although we

FIG. 4. The stability maps for the family of the exact soliton
solutions(8)–(11), corresponding tob=0 anda0=sa0dexact[see Eq.
(12)], and for the solitons found numerically for the samea0 but
b=0.1. The stability is identified from the computation of the sta-
bility eigenvalues(and verified by direct simulations). The shading,
bordered by the dashed lines, marks stability subregions in which
complex eigenvalues were found, while, in the unshaded areas, all
the eigenvalues are real.

FIG. 5. The same as in Fig. 4, but fora0=0.9sa0dexact.

FIG. 6. The area of the stability region vsb, for three different
values ofa0.

FIG. 7. The same as in Fig. 6 fora0=sa0dexact and complex
b.
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have no analytical proof of the instability of the exact soliton
(8) at q.0.25, we notice that the value of the mismatch
parameterq=qc;0.25 is a special one for the exact solution,
as Eqs.(11) show that the phasef vanishes precisely atq
=qc.

A stable soliton of a different type can be found at
q.0.25. This solution, which we will call a type-II soliton,
to distinguish it from the one considered above, which we
will refer to as a type-I soliton, cannot be obtained by the
continuation of the exact solution(8). This makes finding the
type-II soliton directly from the numerical solution of the
stationary version of Eqs.(1) and(2) problematic, as a good
initial guess is not available. Nevertheless, it was found, in
the regionq.0.25, in the following way: one can take the
numerically exact unstable type-I soliton and add an arbi-
trary perturbation to it. A small perturbation initiates decay
of the unstable soliton to zero. However, if the perturbation
is sufficiently large, the outcome may be a spontaneous re-
arrangement of the pulse into a new stable one, which we
identify as a type-II soliton. An example of an unstable
type-I soliton (alias separatrix soliton,see below) and its
stable type-II counterpart, which is generated from it by a
perturbation, is displayed in Fig. 8.

The stability map for the type-II solitons was identified, as
was done above for their type-I counterparts in the region

q,0.25, both by means of the computation of the eigenval-
ues from the linearized equations and by means of direct
simulations. The resulting map is displayed in Fig. 9. It
shows not only the region where the type-II soliton is stable,
but also indicates if the perturbation-induced evolution of the
unstable type-I solution leads directly to the establishment of
a stable type-II soliton, or, instead, the transition to an ex-
cited state(“breather”) is observed, which then slowly re-
laxes into a stable type-II soliton. Also shown are regions
where the stable soliton does not self-trap; instead, the un-
stable soliton either decays to zero or generates a stable de-
localized state.

Solitons of types I and II are actually connected by a
bifurcation. Indeed, the model which supports a stable soli-
ton is a bistable system, as the zero solution is stable too in
this case. According to well-known general principles, in a
bistable system a separatrix must exist, which is a border
between attraction basins of the two stable states. Usually,
the role of the separatrix is played by an extra unstable soli-
ton solution, whose amplitude is smaller and width larger
than those of the stable soliton(see, e.g., Refs.[24,22]). The
unstable type-I soliton is such a separatrix in the case of
q.qc;0.25.

The fact that the type-I soliton is stable atq,qc, while no
stable soliton of type II was found in that region, implies that
a stability-swap bifurcation, involving both solitons, occurs
at q=qc. A conjectured bifurcation diagram is schematically
depicted in Fig. 10.

Note that the bifurcation diagram includes an unstable
branch in the region ofq,qc, which is a conjectured con-

FIG. 8. The shape of the un-
stable type-I (separatrix) and
stable type-II solitons in the FH
(a) and SH(b) components for a
value of the mismatch parameter
exceeding its critical value,q
=0.3.qc;0.25. The other pa-
rameters areb=0, a1=0.3, and
a0=sa0dexact<0.36, as per Eq.
(12).

FIG. 9. The stability map for the type-II soliton self-trapping
from the unstable separatrix(type-I) soliton in the regionq.0.25.
In the regions marked as “fast” and “slow” relaxation, the unstable
soliton directly relaxes into the stable one or does so via the forma-
tion of a breather with slowly decaying intrinsic oscillations. In the
region of “unstable solitons,” the unstable soliton always decays to
zero, and in the region of “delocalized solutions,” a spatially peri-
odic state sets in, instead of a stable soliton. The map pertains to
b=0, with a0 chosen as per Eq.(12).

FIG. 10. The assumed stability-swap bifurcation between soli-
tons of types I and II(thin and bold curves) which occurs at the
critical value of the mismatch,q=qc=0.25. Stable and unstable so-
lutions are depicted by solid and dashed lines, and the vertical axis
refers to the solitons’ amplitudes.
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tinuation of the type-II solution toq,qc. This branch cannot
be readily found from the stationary version of Eqs.(1) and
(2), since a good initial guess is not available for it, and it
cannot be found in dynamical simulations either, as it is un-
stable. Thus, while we did not make a strong effort to explic-
itly find this branch—as, being unstable, it has no direct
physical significance—we assume that such a branch exists.

D. Stability of solitons in a generalized model

The model based on Eqs.(3) and (4) can be generalized
by replacing the evolution and spatial variablest and x, re-
spectively, byz andt:

iuz +
1

2
utt + u * v = s1 − ia1du + ia0v * + ibsu * d2,

ivz +
D

4
vtt +

1

2
u2 = s2q − ia1dv + ia0u * . s14d

This model corresponds, instead of the spatial solitons in
cavities, to temporal solitons in waveguides. The temporal
solitons are localized in the reduced-time variablet and
propagate along the coordinatez. In Eqs. (14), the second
derivatives account for the temporal dispersion[rather than
diffraction, in the original model(3), (3)], D being a relative
SH/FF dispersion coefficient. We have checked that, in this
generalization(for instance, withD=2, instead ofD=1), the
results for the shape and stability of solitons are very similar
to those reported above.

E. Investigation of moving solitons

A straightforward extension of the above analysis is to
search for moving solitons. Their existence in the present
model is not obvious, as the drive terms in Eqs.(3) and (4)
(unlike the loss terms) break the Galilean invariance of the
equations. Without the drive, the Galilean boost with an ar-
bitrary speedC,

u → ueiCX, v → ve2iCX, s15d

transforms any solutionusxd ,vsxd into a moving oneusx
−Ctd ,vsx−Ctd.

To investigate the possibility of the existence of moving
solitons in the present model, we ran systematic numerical
experiments, taking the stable soliton solutions in analytical
or numerical form, as found above, and simulating the full
system of equations(3) and(4) with the boosted initial con-
ditions (15). The result is that steadily moving solitons are
not possible. Instead, a critical valueCcr of the boost param-
eterC was found, such that the soliton moves for a while but
quickly comes to a halt and returns to its initial form, if
C,Ccr, as shown in Fig. 11. In the opposite caseC.Ccr, the
soliton always gets destroyed; see an example in Fig. 12.

The critical boostCcr depends on values of the model’s
parameters. In particular, for the family of the exact solitons
taken in the form of Eqs.(8), with a0 selected as per Eq.
(12), Ccr is shown, as a function of the loss parametera1 at
different fixed values of the mismatchq, in Fig. 13.

The mode of the destruction of the boosted soliton in the
case ofC.Ccr depends on values of the parameters. In par-
ticular, instead of the straightforward decay, as in Fig. 12, the
soliton may first split into two secondary pulses with differ-

FIG. 11. An example of mo-
tion and subsequent stoppage of
the boosted soliton(8), in the case
of a1=0.02, q=0.245,b=0, a0

=sa0dexact=2.828 [see Eq. (12)],
andC=0.3 (this value of the boost
is close to the critical value, which
is Ccr=0.3335 in the present case).
Panels(a) and(b) show the evolu-
tion of the pulse’s amplitude pro-
files in the FF and SH compo-
nents, respectively.

FIG. 12. The same as in Fig.
12, but with the boost parameter
C=0.35 slightly exceeding the
critical valueCcr.

OPTICAL-PARAMETRIC-OSCILLATOR SOLITONS… PHYSICAL REVIEW E 70, 066604(2004)

066604-7



ent velocities, both of which eventually decay. An example
of the latter scenario is displayed in Fig. 14. Also possible
are situations in which the soliton does not split, but its FF
component decays much faster than the SH one(although the
FF and SH loss parameters are equal).

IV. INTERACTIONS BETWEEN SOLITONS

Once stable solitons have been found, the next necessary
step in the investigation of their fundamental dynamical
properties, as well as in the development of potential appli-
cations, is the study of interactions between them. To this
end, we ran systematic simulations of configurations initially
composed of two identical stable solitons with centers placed
at a distanceX0. Note that, unlike the situation in models of
the Ginzburg-Landau type(the ones with the intrinsic gain),
in models with the parametric gain the phase of each indi-
vidual soliton is locked to a single value[see Eqs.(8) and
(11)], and hence the relative phase of the two solitons is not
a free parameter, but is equal to zero[25]; for this reason, the
solitons always attract each other. The simulations demon-
strate that, in all cases, the attraction gives rise to a merger of
the two solitons into a single one. If the loss parametera1 is
large enough, so that the soliton existing at this value ofa1
has no complex eigenvalue of small intrinsic perturbations
(see Figs. 4 and 5), the resulting single soliton emerges in its
stationary form. On the other hand, ifa1 is small and the

soliton possesses an intrinsic complex eigenvalue, the final
soliton appears in an excited(vibrating) state, which then
slowly relaxes to the static one. The time necessary for the
fusion of the two solitons into one depends on the initial
separationX0, but the outcome of the interaction does not
depend onX0.

Below, we illustrate these conclusions by typical ex-
amples. In all the cases, we used exact soliton solutions(8)
to construct the initial configuration. Simulations of the con-
figuration composed of two solitons of a more general form
produced virtually the same results as those displayed below.

If the loss parametera1 is small enough, a pair of exact
solitons merge into a pulse which demonstrates nearly per-
sistent intrinsic vibrations, as was said above and is shown in
Fig. 15. Continuing the simulations on a much longer time
scale demonstrates that the vibrations slowly fade out, and
the pulse relaxes to the static configuration. The latter feature
is seen clearer in Fig. 16, which corresponds to a smaller
initial separation between the solitons.

If a1 is larger, so that the soliton does not support intrinsic
oscillatory modes, two solitons, even separated by a rela-
tively large distance, fuse into a single soliton which emerges
in the stationary state(without intrinsic vibrations), as was
already said above, and is shown in Fig. 17. The fact that the
final soliton is identical to each initial one is obvious from
Fig. 18, which compares the initial field configuration in both
component and its eventual shape.

V. CONCLUSION

In this work, we have introduced a model of a lossy
second-harmonic-generatingsxs2dd cavity driven by a pump
wave at the third harmonic, which gives rise to a new type of
driving terms, characterized by the cross-parametric gain.
The equation for the fundamental-frequency wave may also
contain a quadratic self-driving term, which is generated by
the xs3d nonlinearity.

Unlike previously studied phase-matched models ofxs2d

cavities driven through down- or up-conversion, the present
model admits the exact analytical solution for the soliton, at
the specially chosen value of the gain parameter. Two gen-
eral families of soliton solutions were found in a numerical
form, one of which is a continuation of the exact analytical
solution. At given values of the parameters, one soliton is
stable and one is not. They swap stability via a bifurcation

FIG. 13. The critical valueCcr of the boost parameter(initial
speed), which is defined in Eqs.(15), as a function ofa1 at fixed
values of q, for the exact solitons(8) [i.e., with b=0, and a0

=sa0dexact]. The soliton comes to a halt or gets destroyed, respec-
tively, in the casesC,Ccr andC.Ccr, as shown in Figs. 11 and 12.

FIG. 14. An example of the
splitting of the soliton (8) to
which an overcritical boost was
applied and subsequent decay of
the secondary pulses. In this case,
a1=0.15, q=0.2, b=0, a0

=sa0dexact=0.25, the critical value
of the boost isCcr<0.7, and the
actual value of the boost isC
=0.75. Panels(a) and(b) show the
evolution of the amplitude profiles
in the FF and SH components,
respectively.
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FIG. 15. The merger of two
solitons, with the initial separation
X0=5.2 between them, into a
pulse with excited internal vibra-
tions, which later slowly relaxes
into the stationary soliton. Panels
(a) and (b) show the FF and SH
components of the field, respec-
tively. The parameters areq
=0.207, a1=0.094, and a0

=sa0dexact=0.196; see Eq.(12).

FIG. 16. The same as in Fig.
15, but for a smaller initial sepa-
ration between the solitons,X0

=3.6. In this case, it is obvious
that the vibrating pulse, produced
by the merger of the two initial
solitons, relaxes towards the static
soliton.

FIG. 17. Direct merger of two
solitons into a static soliton, in the
FF (a) and SH (b) components.
The parameters areq=0.195,a1

=0.2, and a0=sa0dexact=0.297,
and the initial separation between
the solitons isX0=5.2.

FIG. 18. The comparison of
the initial and final wave-field
profiles in the FF(a) and SH(b)
components in the same case
which is shown in Fig. 17.
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which occurs at a critical value of the mismatch parameter.
Full stability regions of the solitons were identified by means
of numerical computation of the corresponding eigenvalues
for small perturbations(stability conditions for the zero so-
lution, which is a necessary ingredient of the full conditions
for the soliton’s stability, were found in an analytical form).
The stability of the solitons was also verified in direct simu-
lations, with the conclusion that an unstable soliton rear-
ranges into a stable one(which may appear in the form of a
breather), or into a delocalized state, or decays to zero. Ad-
ditionally, it was found that steadily moving solitons do not
exist in the present model. If the soliton is initially boosted,

it either comes to a halt or, if pushed too hard, gets destroyed
(possibly, via splitting into two pulses).

Interactions between initially separated solitons were also
investigated by dint of systematic direct simulations. It was
found that stable solitons always merge into a single one. In
the system with weak loss, the final solitons appear in an
excited form(the breather) and then slowly relax to the static
configuration. If the loss is stronger, the final soliton emerges
in the stationary form.

The model introduced in this work can be further investi-
gated in various directions. In particular, a two-dimensional
version of this cavity model may be an interesting subject.
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