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We introduce a model of a lossy second-harmonic-genergjiff) cavity externally pumped at the third
harmonic, which gives rise to driving terms of a new type, correspondingdmss-parametricgain. The
equation for the fundamental-frequen@fF) wave may also contain a quadratic self-driving term, which is
generated by the cubic nonlinearity of the medium. Unlike previously studied phase-matched mogéls of
cavities driven at the second harmonic or at FF, the present one admits an exact analytical solution for the
soliton, at a special value of the gain parameter. Two families of solitons are found in a humerical form, and
their stability area is identified through numerical computation of the perturbation eigenystaigiity of the
zero solution, which is a necessary condition for the soliton’s stability, is investigated in an analytical form
One family is a continuation of the special analytical solution. At given values of the parameters, one soliton
is stable and the other one is not; they swap their stability at a critical value of the mismatch parameter. The
stability of the solitons is also verified in direct simulations, which demonstrate that an unstable pulse rear-
ranges itself into a stable one, or into a delocalized state, or decays to zero. A soliton which was given an initial
boostC starts to move but quickly comes to a halt, if the boost is smaller than a critical Cglug C> C,,
the boost destroys the solitggometimes, through splitting into two secondary pulskgeractions between
initially separated solitons are investigated, too. It is concluded that stable solitons always merge into a single
one. In the system with weak loss, it appears in a vibrating form, slowly relaxing to the static shape. With
stronger loss, the final soliton emerges in the stationary form.
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I. INTRODUCTION actions[15], the use of the quasi-phase-matching technique
[16], two-dimensional solitonésee, e.g., Ref17]), etc. Be-

In the vast family of optical solitons, an important niche is sides their significance as the subject of fundamental re-
occupied by solitary waves in cavities, supported by the quasearch, OPO cavity solitons also have a potential for the
dratic (x'?) nonlinearity of the degenerate optical- design of rewritable multipixel optical-memory pattefas).
parametric-oscillatofOPO) type [1,2]. The intrinsic loss in In this work, we aim to propose and analyze another pos-
the cavity should be compensated by an external pump fieldibility to drive dissipative cavities with the SHG
E, which in most cases is supplied at the second harmonibonlinearity—namely, through a phase-matched third-
(SH) [3]. Such an arrangement is frequently referred to afarmonic(TH) pump wavew. Obviously, the corresponding
down-conversiorand is described by the model in which driving terms in the equations for the FF and SH fialdsnd
either the evolution equation for the SH fieldexplicitly v, which are generated by the parametric interaction of these
contains a constant driving termE [4,5] or, equivalently, fields with the TH pump, are proportional, respectively, to
the equation for the fundamental-freque&F) waveu in-  wo* and wu*. Thus, this model includes a new feature, the
cludes a parametric-gain termrEu*, where the asterisk cross-parametric gainin the system of coupled FF and SH
stands for complex conjugatig6—8]. Alternatively, the cav- waves, and a problem of straightforward interest is to study
ity may be externally pumped at the FF, which is referred tosolitons that can be supported by this type of gain in a lossy
as up-conversionthe respective model including a constant SHG setting, especially as concerns the stability of the soli-
driving term in the FF equatiof®]. For both cases, families tons. Besides that, we will also take into account the possi-
of one-dimensional solitons and their stability have been inbility of an additional quadratically nonlinear parametric
vestigated in detail; see Refgl-10 and references therein. self-driving term in the equation for the FF field in the
The stability of cavity solitons was tested in a direct experi-form of w(u* )2, which may be induced by the same TH
ment using photorefractive nonlinearity1]. pump through the!® (cubic) nonlinearity. In this work, we

It should be mentioned that, as the cavity models are diseonsider only bright solitons; dark solitons and patterns in
sipative ones, the solitary pulses found in these models athe form of domain wallgsee, e.g., Refl19]) may also be
not solitons in the rigorous sense. Nevertheless, this term igossible in the model including the TH drive.
broadly applied to them; therefore we use it in this paper, As concerns the mutual phase matching between the FF,
too. SH, and TH fields, which is implied in the model, it was

The analysis of solitons in OPO models was extended imdemonstrated, in another context, that matching of this type
various directions, including the study of moving solitons may take place in the so-called multistgfy’ systems[20].
[12], interactions between thefi3], nondegenerate second- However, the subject of Ref20] was the corresponding
harmonic generatioiSHG) which involves two FF waves three-wave solitons, rather than pumping of the FF and SH
with orthogonal polarizationgl4], general three-wave inter- fields through the TH wave.
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The paper is organized as follows. In Sec. Il, we give thepump wave in the presence of the cubic nonlinearity. The
formulation of the model and find particular exact solutionsfactors ofi in front of the cross-parametric-driving terms in
for the solitons in an analytical form. In the same section, weEgs. (1) and (2), while wy is assumed real, can always be
also investigate stability conditions for the zero solution,fixed, defining phase shifts between the corresponding
which is a necessary prerequisite for the stability of solitonswaves.

In Sec. Ill, we find two families of general soliton solutions  After obvious normalizationgn particular, the SH field is
in a numerical form. One family is a direct continuation of rescaled withu— 2u, so as to keep the coefficients in front
the exact solution, while the other one is different. As well asof the cross-driving terms equal in the two equatjpis.
the analytically found soliton, they always have a single-(1) and(2) can be cast in the following form:

humped shape, but unlike the constant-phase exact solutions,

they feature intrinsic chirp. Stability regions for the solitons iU, + }uxx+ u*v=1-iau+iaw* +iBU*)2 (3)
are identified, in the system’s parameter space, through com-

putation of the corresponding eigenvalues for small pertur-

bations. One of the solitons is stable, and the other one is o1 1., _ -

not; they swap stability via a bifurcation at a critical value of o+ Z vt U= (20— Tag)u +iagu™, (4)
the mismatch parameter. The shape of the stability regions is

quite nontrivial; in the model with weak losses, stable soli-whereagy and 3 are the effective pumping coefficients, both
tons may have complex eigenvalues, corresponding t§roportional tow,, and the mismatch coefficient in E@) is
weakly damped intrinsic oscillatory modes. The stability ishormalized to be ¥a different variant of the model is ob-
also verified in direct simulations, with the conclusion thattained by fixing the latter coefficient to be -1, but the exis-
the unstable soliton rearranges into a stable one or into #nce of bright solitons is not expected in that gaSéhe
delocalized spatially periodic state, or, sometimes, it decay tgotation for the fieldsi andv and the coefficient; was not
zero. Also in Sec. Ill, we show that attempts to produceditered, although they were rescal@gécall we assume;
moving solitons fail: if the soliton is initially boosted by =ai). By means of a phase shift afandv, ap may always
lending it a speedC, it quickly stops, provided tha€ is  Pbe made real, which we assume below, wigilles, generally
smaller than a critical valu€,,; the boost withC>C,, de-  speaking, a complex coefficient.

stroys the soliton. Section IV deals with interactions between Obviously, Egs(3) and(4) cannot give rise to stable lo-
two stable solitons, initially placed at some distance. Theycalized solutions unless the zero solutiorv=0 is stable.
merge into a Sing]e So“ton, which emerges with s|ow|y fad_LineariZing the equations, an elementary calculation yleldS
ing intrinsic vibrations in the weakly dissipative model, or the following stability condition for the zero solution:

immediately in the stationary form if the loss parameter is 2 2+ (1+29)%4 if1+20>0

larger. Section V discusses possible extensions of the work ap=ay+(1+20774, d ’

and concludes the paper. ai<da? if1+29<0. (5)
[l. MODEL AND EXACT RESULTS Consideration of the linearized version of E¢8) and (4)

. . . @i ) makes it also possible to predict the asymptotic form of the
Equations which describe the degenerglté interaction gy onentially decaying tails of the soliton solution |af
between the FF and SH fieldgx,t) andv(x,t) in a one-

dimensional lossy cavity in the presence of an additional
pump TH wavew, whose depletion is negligible, are (up*) ~exp— \X)), (6)

straightforward to derive: where a(generally complex constank (it is defined so that

1 its real part is positiveis to be found from the equation
fwoUy + 5ot XPu* v = (0 ~ia)u+iwg *

<}A2—1+ia1><})\2—2q—ial>:a(z). (7)
+ixFwo(u*)?, (1) 2 4

L L The complex structure ok implies that the soliton must
. 4 L @2 . . . have a nontrivial intrinsic phase structure, which will be
210Uyt SUsct SXTU =2 T lau W™ (2) g ied in detail below.

. . . Particular exact soliton solutions to Eq8) and (4) can
Here,wq is the fundamental carrier frequency, the coefﬂmentbe sought for as

amenable for the three-wave coupling between the FF, SH, . '

and TH fields is absorbed intwy, g, andq, are real detun- Ug(X) = A €% secR(kx), vy(x) =Be??secl(kx), (8)

ing coefficients at the FF and SH, an¢land «, are the loss
coefficients for the same fields. In this paper, we focus on th
most natural caseq=«,, but the analysis has demonstrated
that the results do not differ in any noticeable aspectafpr . I . .
+ a,. The last term in Eq(1) takes into regard the above- ?A)r/).dlrect substitution of the expressiof® into Egs.(3) and
mentioned possibility of the nonlinear parametric self-* 7"

driving of the FF field, which can directly couple to the TH K*=1-2q, (9)

wherex, ¢ andA, B are real constants. This ansatz may pro-
Guce solutions in the case B=0 [no self-driving quadratic
term in Eq.(3)]. Then, the soliton’s parameters are obtained
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2
Re{u(x)} Ju} (a) Re{u(x)} fu(x)| (b)
1.5} 1.5} FIG. 1. A typical shape of the
soliton’s FF (a) and SH compo-
—_— —_ nents (b), as given by the exact
%1 ~:-*1 analytical expressions(8), (9),
Im{u(x)} Im{u(x)} (10, and (11) for 8=0, a;=0.1,
0.5 05 and q=0.2; accordingly, Eq(12)
. : yields, in this case, (ap)exact
=0.1y5=0.224.
—qO -5 0 5 10 —90 -5 0 5 10
X X
A=B=3k?, (10) a linearly coupled additional lossy core played a stabilizing

role [23]. However, the gain in that system was not of the
cog3¢) = aylay, SIN3¢) = (1 - 4q)/ a. (11)  Parametric type.

Due to the identity sif(3¢)+co$(3¢)=1, Egs.(11) give
rise to an additional constraint on the parameters of the  Ill. SOLITON FAMILY: NUMERICAL RESULTS
model v;/1h|chb|s nefcessgry for the existence of an exact solu- he analytical solutions were found above in the special
tion in the above form: case only, and even in that case, full stability analysis re-
_ _ |2 A2 quires the use of numerical methods. In this section, we aim
= (@0)exaer= Va1 +(1 - 40) (12 to construct a general family of soliton solutions in a numeri-
Equation (12) determines the value of the cross- cal form and then study their stability. The possibility of the
parametric gain which is necessary to support the exact solexistence of moving solitons will be considered too.
ton solution. Thus, two conditiong=0 and Eq.(12), must
be imposed on the parameters of E@@.and(4) to provide

for the existence of an analytical solution of the soliton in the A. Stationary solitons

simple form(8) (in fact, the conditiona;=a,, which was A family of soliton solutions to the stationary version of
adopted above, is also necessary for the existence of tHegs.(3) and(4), with u;=v,=0, was constructed by means of
exact soliton in the present foym a continuation procedur¢based on Newton's numerical

It is relevant to notice that, comparing E@) with the  method, starting with exact solutions in the form given by
asymptotic wave forn{6), one can identify, for the present Egs. (8)—(11), which are valid in the case g8=0 and «y
solution,A=2«. Then, taking into regard E@12), it is easy  =(ag)exas @nd then gradually varying botk, and 8. As a
to verify that this\ indeed satisfies Eq7). result, it was concluded that the shape of the soliton in both

A necessary stability criterion for the exact soliton solu-the FF and SH componenis(x)| and [v(x)| does not vary
tion can be obtained by inserting the relatid®) into the  much in comparison with that of the exact solution, while a
stability condition(5) for the zero solution. After simple al- new feature is an intrinsic phase structure of the soliton’s
gebra, it takes the form wave field, characterized by nonzeghirps ¢” and ¢,

1/10< q < 1/2. (13) ¥Eere¢(X) and w(x)_are phases of_the fieldgx) aan(x):
ese features are illustrated by Figs. 2 and 3, which display

A typical example of the exact soliton given by the abovetwo generic subfamilies of the numerically found stationary
expressions is shown in Fig. 1. Below, numerical results willsoliton solutions, obtained by varying the self-driving coef-
be produced foray# (ag)exact @Nd B+ 0, and they will be ficient 8 at fixed values of the cross-parametric-drive coeffi-
compared to the shape shown in Fig. 1. cient o (in these figures, only real values Bfare included;

It is relevant to mention that previously considered phasecomplexs, which do not produce effects drastically different
matched OPO models with a parametric gain of the downfrom those found for reaB, will be briefly considered be-
conversion typéprovided by the SH pumdid not produce  low). Figure 2 corresponds teg=(ag)exacs Which is the
exact solutions similar to the present one. Exact solutiongalue that gives rise to the exact solutidar 3=0) [see Eq.
were only obtained in the case of large detunj6g21]. In  (12)], and Fig. 3 presents the situation at a different value of
that limit, the SH field can be eliminated, and the remainingeg—namely, ap=0.9ag)exace IN these figures, the amplitude
FF equation amounts to a parametrically driven damped cuprofiles are shown through their differences from those cor-
bic nonlinear Schrédinger equation, which has a pair of welltesponding to the exact soliton solutig8)—(11), taken at
known exact solitary-pulse solutiorisee, e.g., Ref[22)). B=0 anday=(ap)exacs DeCaUse full profiles are too close to
On the other hand, nongeneric exact analytical solutions foeach other.
solitons(which explicitly contain the chirpwere found in a At other values ofyg, the soliton solutions are quite simi-
model of a two-corey'? system of the Ginzburg-Landau lar to those displayed in Figs. 2 and 3. We stress that, while
type, in which intrinsic gain was set in the nonlinear core andhe amplitude-profile differences displayed in these figures
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FIG. 2. The differencesu(x)|
~|upx)| and [v(¥)|-lve(¥)| be-
tween the amplitude distributions
in the FF(a) and SH(b) compo-
nents of the numerically found ge-
neric solitons and the exact ana-
lytical solution. Panelgb) and(d)
display the phase chirps’ and ¢/
in the FF and SH components of
the generic soliton solutionghe
chirp distributions are shown on
the half-axis, in view of the soli-
ton's symmetry, and only in the
region of x where the soliton is
actually locateyl The fixed pa-
rameters are=0.2, ;=0.1, and
for this figure, the corresponding
value (ap)exace=0.224, as per Eq.
(12), is chosen. Note that the full
shapedu(x)| and v(x)| of all the
solitons in both components are
strictly single-humped ones.

may have a relatively complex form, the full profiles|ofx)| stability eigenvalues within the framework of the system of
and|v(x)| always keep a simple single-humped shape. linearized equations for infinitesimal perturbations. We have
performed this computation through the corresponding Jaco-
bian matrix of the linearized system. The results can be con-
veniently summarized in the form of maps showing stable
The most fundamental approach to the investigation of th@and unstable regions in the system’s parameter planes. First,
stability of stationary solitons is based on the computation ofn Fig. 4 we display the stability map for the exact soliton

B. Stability of the stationary solitons

0.06 [ 0.06
B=01 @) B =01 /®
0.04 : 0.05p /
B = o.oam o 0al P=0088
X002 5 o, \7« A\ .
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FIG. 3. The same as in Fig. 2,
but for ag=0.9 ag)exac=0-201.

0.07
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X
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0.35 . 5
Unstable solitons %1900
- (4]
g 0.3f Complex eigenvalue region ‘2'1800
in case of |B]| =0 = = o
g 0.25 1B 18 =0.1[B| =0 g O = ((xo)exact
5 KIS S ¥
o T [ P1700 Og = o'g(ao)exacl
(2] i c
£ ool Stable solitons ]
c . =
S o
g — g 1600 %o = 1.1 ((Xo)exact
— 0.15Complex elgenvaIF\ L7 =]
< region in case of || =0 51500
01 Unstable solitons s
’ 0.1 0.2 0(.x3 04 05 06 81400 i i i .
1 0 0.02  0.04 I8l 0.06  0.08 0.1

FIG. 4. The stability maps for the family of the exact soliton
solutions(8)—(11), corresponding t@B=0 andag=(ag)exact[S€E EQ.
(12)], and for the solitons found numerically for the sawegbut

B=0.1. The stability is identified from the computation of the sta-
bility eigenvaluegand verified by direct simulatiopsThe shading, 0 exactly the same soliton subfamilies which were included

bordered by the dashed lines, marks stability subregions in whici Figs. 2 and 3. A noticeable observation is that, depending

complex eigenvalues were found, while, in the unshaded areas, 8N the value ofay, the stability area may both decrease and
the eigenvalues are real. increase with3. As concerns the additional case af

=1.1(ag)exaes INCcluded in Fig. 6, the stability map for it is not

solutions (8)—(11) in the plane(ay,q), with 8=0 and oy  very different from that forap=(ap)exact (S€€ Fig. 4 there-
=(ap)exact[S€E€ EQq(12)], and also for the solitons found nu- fore, it is not displayed here separately.
merically at the same values of the parameters, except for the We have also investigated the case when the self-driving
self-driving FF coefficieni{3=0.1. Note that the stability re- coefficientg in the FF equatiori3) is complex. In this case,
gion for the exact solitons is located inside the stripe correthe stability maps are not drastically different from the ones
sponding to the necessary stability conditid®), being ac-  displayed above for reg® (therefore we do not show them
tually much narrower than itwhich means that there are herg, although the area of the stability region gets somewhat
strong nontrivial stability conditions for the soliton proper, smaller. The area is shown, as a funct|on|,6f for two
which do not amount to the simple criterion that guaranteeslifferent caseg3=(1+i)||/\2 and8=i|g| in Fig. 7.
the stability of the zero background The conclusions concerning the stability of the solitons,

In Fig. 4 (and similarly in Fig. 5; see belowwe distin-  which were drawn above on the basis of the stability eigen-
guish between stability subregions in which all the eigenvalvalues, were also verified against direct simulations of the
ues are real and those where complex ones are found. Afdll system of equationg3) and (4), performed at a suffi-
cordingly, a perturbation applied to the stable soliton in theciently dense grid of points covering the predicted stability
latter subregion excites a damped intrinsic oscillatory modend instability regions in the system’s phase space. As a re-
(this will be observed below, in the case of interactions besult, it has been concluded that all the solitons, which were
tween the solitons Quite naturally, the complex eigenvalues predicted to be stable, are stable indeed in the direct evolu-
are found in the case when the loss parameters small  tion. The solitons which are expected to be unstable decay to
enough. zero under the action of small perturbations or, if the pertur-

A similar stability map is shown in Fig. 5 for the same bation is stronger, they may rearrange themselves into soli-
case which was selected above for Fig. 3—i.ey  tons of a new kind, as described below.
=0.9 ap)exact Additionally, for both casesyy=(ap)exact and
ap=0.9ag)exacs @S Well as for another oney=1.1(ag)eyact
Fig. 6 shows the area of the stability region as a function of One may observe that the stability areas displayed in Figs.
B, between the two values chosen for the display in Figs. 4 and 5 are located af<0.25. In particular, although we
and 5,8=0 andB=0.1. Note that two plots in Fig. 6 pertain

FIG. 6. The area of the stability region & for three different
values ofay.

C. Bifurcation to the second type of stable solitons

1900
o
0.35 =2
Complex eigenvalue Unstable 5

T (.3 region in case of |p| =0 solitons §1800
é Complex eigenvalue g

g 0.25 region in case of |p| =0.1 $1700
o =
o 2

g 02 21600
5] 5]
Z0.15 o

Unstable solitons ®1800 002 004, 006 008 0.1
01 04 02 03 04 05 06 1B
1
FIG. 7. The same as in Fig. 6 fary=(ag)exact 2and complex
FIG. 5. The same as in Fig. 4, but fap=0.9 ag)exact B.
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25 2
(a) . ] (b) f‘*\v_/Stable soliton FIG. 8. The shape of the un-
2 \ Stable soliton 1.5t ‘ stable type-l (separatrix and
' Unstabl stable type-lIl solitons in the FH
1.5 — ind s:;a?at; (@) and SH(b) components for a
% i;, 1 " soliton value qf the_ misnjgtch parameter
-1 - \ exceeding its critical valueq
=0.3>q.,=0.25. The other pa-
05 05 rameters areBf=0, «;=0.3, and
ag=(ag)exact=0.36, as per Eq.
(12).
-% 10 —qO 10

have no analytical proof of the instability of the exact solitonq<0.25, both by means of the computation of the eigenval-
(8) at g>0.25, we notice that the value of the mismatchues from the linearized equations and by means of direct
parameten=q,=0.25 is a special one for the exact solution, simulations. The resulting map is displayed in Fig. 9. It
as Egs.(11) show that the phase vanishes precisely a ~ shows not only the region where the type-Il soliton is stable,
=0 but also indicates if the perturbation-induced evolution of the
A stable soliton of a different type can be found atUunstable type-I solution leads directly to the establishment of
q>0.25. This solution, which we will call a type-Il soliton, & Stable type-Il soliton, or, instead, the transition to an ex-
to distinguish it from the one considered above, which wecited state(‘breather) is observed, which then slowly re-
will refer to as a type-l soliton, cannot be obtained by thelaxeS into a stable type-ll soliton. Also shovyn are regions
continuation of the exact solutia®). This makes finding the Where the stable soliton does not self-trap; instead, the un-
type-Il soliton directly from the numerical solution of the stable soliton either decays to zero or generates a stable de-

i . : localized state.
stationary version of Eqg1) and(2) problematic, as a good Solitons of types | and Il are actually connected by a

initial guess is not "?‘Va"ab'e- N?"e“he'e_ss’ it was found, hifurcation. Indeed, the model which supports a stable soli-
the regiong>0.25, in the following way: one can take the y,, i5 5 pistable system, as the zero solution is stable too in
numerically exact unstable type-l soliton and add an arbiy,ig case. According to well-known general principles, in a
trary perturbation to it. A small perturbation initiates decaypistaple system a separatrix must exist, which is a border
of the unstable soliton to zero. However, if the perturbationyetween attraction basins of the two stable states. Usually,
is sufficiently large, the outcome may be a spontaneous rehe role of the separatrix is played by an extra unstable soli-
arrangement of the pulse into a new stable one, which Weon solution, whose amplitude is smaller and width larger
identify as a type-ll soliton. An example of an unstablethan those of the stable solitgsee, e.g., Ref§24,22). The
type-l soliton (alias separatrix soliton,see below and its  unstable type-l soliton is such a separatrix in the case of
stable type-ll counterpart, which is generated from it by agq>q.,=0.25.
perturbation, is displayed in Fig. 8. The fact that the type-I soliton is stablegt g¢, while no

The stability map for the type-II solitons was identified, asstable soliton of type Il was found in that region, implies that
was done above for their type-l counterparts in the regiora stability-swap bifurcation, involving both solitons, occurs

04 at q=0q.. A conjectured bifurcation diagram is schematically

" depicted in Fig. 10.
5 Note that the bifurcation diagram includes an unstable
‘uE‘a Delocalized solutions branch in the region ofj<q., which is a conjectured con-
50.35 ]
o . .
§ Stable solitons (fast relaxation) Stable solutions
E 0.3 Stable solitons (slow relaxation) |
20
3 Unstable solitons § Type | solution Type Il solution]|
o EL A
025751 02 03 04 05 06 < o
Oy o . \\
FIG. 9. The stability map for the type-Il soliton self-trapping _->="" Unstablé solutions -4
from the unstable separatritype-I) soliton in the regiorg>0.25. R . % ‘
In the regions marked as “fast” and “slow” relaxation, the unstable q ( detuning parameter )

soliton directly relaxes into the stable one or does so via the forma-

tion of a breather with slowly decaying intrinsic oscillations. Inthe  FIG. 10. The assumed stability-swap bifurcation between soli-
region of “unstable solitons,” the unstable soliton always decays tdons of types | and I(thin and bold curveswhich occurs at the
zero, and in the region of “delocalized solutions,” a spatially peri-critical value of the mismatchg=q.=0.25. Stable and unstable so-
odic state sets in, instead of a stable soliton. The map pertains tations are depicted by solid and dashed lines, and the vertical axis
B=0, with oy chosen as per Eq12). refers to the solitons’ amplitudes.
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200 =00 FIG. 11. An example of mo-
(b) tion and subsequent stoppage of

150 150 the boosted solito8), in the case

of @1=0.02,9=0.245,8=0, ag

=(ap)exace2.828 [see EQ.(12)],
= 100 + 100 | andC=0.3(this value of the boost
/ is close to the critical value, which
50 50 /, is C.,=0.3335 in the present cgse
Z Panelqa) and(b) show the evolu-
/ tion of the pulse’s amplitude pro-
0 0 files in the FF and SH compo-

-5 g 5 nents, respectively.
tinuation of the type-Il solution tq< .. This branch cannot E. Investigation of moving solitons

be readily found from the stationary version of E¢s. and A straightforward extension of the above analysis is to

(2), since a good initial guess is not available for it, and itgearch for moving solitons. Their existence in the present
cannot be found in dynamical simulations either, as it is Uny,qdel is not obvious. as the drive terms in E®.and (4)
stable. Thus, while we did not make a strong effort to explic-jike the loss termsbreak the Galilean invariance of the

itly find this branch—as, being unstable, it has no directgqations. Without the drive, the Galilean boost with an ar-

physical significance—we assume that such a branch eXiStBitrary speedC

jCX iCX
D. Stability of solitons in a generalized model u—ue”, v —ve™, (15)
The model based on Eqe) and (4) can be generalized transforms any solutiomu(x),v(x) into a moving oneu(x

by replacing the evolution and spatial variabtesndx, re- —Ct),z{(x—C_t). . . .
spectively, byz and 7 To investigate the possibility of the existence of moving

solitons in the present model, we ran systematic numerical
1 experiments, taking the stable soliton solutions in analytical
iU+ —u_ +u*v=(L-ia)u+iag* +ipu*)>? or numerical form, as found above, and simulating the full
2 system of equation&) and(4) with the boosted initial con-
ditions (15). The result is that steadily moving solitons are
D 1 not possible. Instead, a critical val@, of the boost param-
iv,+ —v,,+ U= (2q-ia)v +iagu*. (14) eterC was found, such that the soliton moves for a while but
4 2 quickly comes to a halt and returns to its initial form, if
C<C,, as shown in Fig. 11. In the opposite c&e C.,, the
This model corresponds, instead of the spatial solitons isoliton always gets destroyed; see an example in Fig. 12.
cavities, to temporal solitons in waveguides. The temporal The critical boostC., depends on values of the model's
solitons are localized in the reduced-time variableand  parameters. In particular, for the family of the exact solitons
propagate along the coordinate In Egs.(14), the second taken in the form of Eqs(8), with oy selected as per Eq.
derivatives account for the temporal dispersfoather than (12), C, is shown, as a function of the loss parametemt
diffraction, in the original mode(3), (3)], D being a relative  different fixed values of the mismatah in Fig. 13.
SH/FF dispersion coefficient. We have checked that, in this The mode of the destruction of the boosted soliton in the
generalizatior(for instance, wittD=2, instead oD=1), the  case ofC>C, depends on values of the parameters. In par-
results for the shape and stability of solitons are very similaticular, instead of the straightforward decay, as in Fig. 12, the

to those reported above. soliton may first split into two secondary pulses with differ-

100 100

(a) (b)

80 80

60 60 FIG. 12. The same as in Fig.
-~ - 12, but with the boost parameter

40 — 40 C=0.35 slightly exceeding the

critical valueC,,.
20 20
4 -10 0 10 0 -10
X
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16 soliton possesses an intrinsic complex eigenvalue, the final
~ 14 soliton appears in an excite@ibrating) state, which then
g 115 slowly relaxes to the static one. The time necessary for the
§' q=0.18 fusion of the two solitons into one depends on the initial
g separationXy, but the outcome of the interaction does not
5 o8 q502 depend orX,,.
506 q=0.22 Below, we illustrate these conclusions by typical ex-

I
{

amples. In all the cases, we used exact soliton soluii®ns

to construct the initial configuration. Simulations of the con-
051 02 03 _ 04 05 06 figuration composed of two solitons of a more general form
! produced virtually the same results as those displayed below.

FIG. 13. The critical valueC,, of the boost parametdinitial If the loss parameter, is small enough, a pair of exact
speed, which is defined in Eqs(15), as a function of, at fixed ~ SOlitons merge into a pulse which demonstrates nearly per-
values ofq, for the exact solitong8) [i.e., with B=0, anda, Sistentintrinsic vibrations, as was said above and is shown in
= (@p)exac). The soliton comes to a halt or gets destroyed, respecEig. 15. Continuing the S'mU|a_t'0n~°f on a much longer time
tively, in the case€ < C., andC>Cy, as shown in Figs. 11 and 12. scale demonstrates that the vibrations slowly fade out, and

the pulse relaxes to the static configuration. The latter feature
ent velocities, both of which eventually decay. An example!S S€en clearer in Fig. 16, which corresponds to a smaller

of the latter scenario is displayed in Fig. 14. Also ossibleInitial sgparation between the ;olitons. Lo
play g P If a, is larger, so that the soliton does not support intrinsic

are situations in which the soliton does not split, but its FF

component decays much faster than the SH(aiteough the ?SC:"‘T{OW r;_otdes, tv¥o sqlltons, _evlen sle_{aaratﬁ_d hby a rela-
FF and SH loss parameters are egual ively large distance, fuse into a single soliton which emerges

in the stationary statéwithout intrinsic vibrationy as was

already said above, and is shown in Fig. 17. The fact that the

final soliton is identical to each initial one is obvious from

Fig. 18, which compares the initial field configuration in both
Once stable solitons have been found, the next necessacpmponent and its eventual shape.

step in the investigation of their fundamental dynamical

properties, as well as in the development of potential appli- V. CONCLUSION

cations, is the study of interactions between them. To this

end, we ran systematic simulations of configurations initially In this work, we have introduced a model of a lossy

composed of two identical stable solitons with centers placegecond-harmonic-generatirig'®) cavity driven by a pump

at a distanceXy. Note that, unlike the situation in models of wave at the third harmonic, which gives rise to a new type of

the Ginzburg-Landau typghe ones with the intrinsic gain  driving terms, characterized by the cross-parametric gain.

in models with the parametric gain the phase of each indiThe equation for the fundamental-frequency wave may also

vidual soliton is locked to a single valysee Eqs(8) and  contain a quadratic self-driving term, which is generated by

(11)], and hence the relative phase of the two solitons is nothe ¥® nonlinearity.

a free parameter, but is equal to zg25]; for this reason, the Unlike previously studied phase-matched models/8f

solitons always attract each other. The simulations demorzavities driven through down- or up-conversion, the present

strate that, in all cases, the attraction gives rise to a merger ehodel admits the exact analytical solution for the soliton, at

the two solitons into a single one. If the loss parametgeis  the specially chosen value of the gain parameter. Two gen-

large enough, so that the soliton existing at this value:of eral families of soliton solutions were found in a numerical

has no complex eigenvalue of small intrinsic perturbationform, one of which is a continuation of the exact analytical

(see Figs. 4 and)5the resulting single soliton emerges in its solution. At given values of the parameters, one soliton is

stationary form. On the other hand, 4f;, is small and the stable and one is not. They swap stability via a bifurcation

IV. INTERACTIONS BETWEEN SOLITONS

25 25 FIG. 14. An example of the
(a) (b) splitting of the soliton (8) to
20 20 which an overcritical boost was
applied and subsequent decay of
15 15 the secondary pulses. In this case,
- - a;=0.15, g=0.2, B=0, «a
10 10 =(ap)exace 0-25, the critical value
of the boost isC,~0.7, and the
5 5 actual value of the boost i€
=0.75. Panelga) and(b) show the
0 . evolution of the amplitude profiles

in the FF and SH components,
respectively.
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FIG. 15. The merger of two
solitons, with the initial separation
Xo=5.2 between them, into a
pulse with excited internal vibra-
tions, which later slowly relaxes
into the stationary soliton. Panels
(a) and (b) show the FF and SH
components of the field, respec-
tively. The parameters areq
=0.207, @,=0.094, and aq
=(ap)exace 0-196; see Eq12).

FIG. 16. The same as in Fig.
15, but for a smaller initial sepa-
ration between the solitonsXg
=3.6. In this case, it is obvious
that the vibrating pulse, produced
by the merger of the two initial
solitons, relaxes towards the static
soliton.

FIG. 17. Direct merger of two
solitons into a static soliton, in the
FF (@) and SH (b) components.
The parameters arg=0.195,a;
=0.2, and a0=(ao)exact=0.297,
and the initial separation between
the solitons isXy=5.2.

FIG. 18. The comparison of
the initial and final wave-field
profiles in the FHa) and SH(b)
components in the same case
which is shown in Fig. 17.



V. LUTSKY AND B. A. MALOMED PHYSICAL REVIEW E 70, 066604(2004

which occurs at a critical value of the mismatch parameterit either comes to a halt or, if pushed too hard, gets destroyed
Full stability regions of the solitons were identified by means(possibly, via splitting into two pulses

of numerical computation of the corresponding eigenvalues Interactions between initially separated solitons were also
for small perturbationgstability conditions for the zero so- investigated by dint of systematic direct simulations. It was
lution, which is a necessary ingredient of the full conditionsfound that stable solitons always merge into a single one. In
for the soliton’s stability, were found in an analytical form the system with weak loss, the final solitons appear in an
The stability of the solitons was also verified in direct simu-excited form(the breatherand then slowly relax to the static
lations, with the conclusion that an unstable soliton rearconfiguration. If the loss is stronger, the final soliton emerges
ranges into a stable o@hich may appear in the form of a in the stationary form.

breathe), or into a delocalized state, or decays to zero. Ad- The model introduced in this work can be further investi-
ditionally, it was found that steadily moving solitons do not gated in various directions. In particular, a two-dimensional
exist in the present model. If the soliton is initially boosted, version of this cavity model may be an interesting subject.
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